

NUMBER (including Roman numerals) AND PLACE VALUE		
Year One	Year Two	Year Three
- Count to and across 100, forwards and backwards, beginning with 0 or 1 or from any given number - Count, read and write numbers to 100 in numerals - Count in 2 s , 5 s and 10 s - Identify one more and one less than a given number - Use the language of: equal to more than, less than, most, least - Read and write numbers 1-20 in numerals and in words - Identify numbers using objects and pictorial representations including on a number line - Represent numbers using objects and pictorial representations including on a number line	- Count in steps of 2,3 and 5 from 0 - Count in tens from any given number, forwards and backwards - Compare and order numbers from 0-100 - Use the <, > and = signs - Read and write number to at least 100 in numerals and words - Recognise the value of each digit in a twodigit number (tens and ones) - Identify, represent and estimate numbers using different representations including on a number line	- Count from 0 in multiples of 4, 8, 50 and 100 - Find $\mathbf{1 0}$ or $\mathbf{1 0 0}$ more or less than a given number - Compare and order numbers to 1000 - Read and write numbers to 1000 in numerals and words - Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks - Recognise the value of each digit in a three-digit number (hundreds, tens and ones) - Identify, represent and estimate numbers using different representations

NUMBER (including Roman numerals) AND PLACE VALUE

Year Four	Year Five	Year Six
- Count backwards through 0 to include negative numbers - Count in multiples of 6, 7, 9, 25 and 1000 - Find $\mathbf{1 0 0 0}$ more or less than a given number - Order and compare numbers beyond 1000 - Compare numbers with the same number of decimal places up to two decimal places - Read Roman numerals to 100 - Recognise the value of each digit in a fourdigit number (thousands, hundreds, tens and ones) - Find the effect of dividing a one or twodigit number by 10 or 100 , identifying the value of the digits in the answer as units, tenths and hundredths - Round any number to the nearest $\mathbf{1 0 , 1 0 0}$ or 1000 - Round decimals with one decimal place to the nearest whole number - Identify, represent and estimate numbers using different representations	- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through 0 - Count forwards and backwards in steps of powers of 10 for any given number up to 1 000000 - Read, write, order and compare numbers to at least 1000000 and determine the value of each digit - Read Roman numerals to 1000 and recognise years written in Roman numerals - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents - Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000	- Use negative numbers in context and calculate intervals across zero - Read, write, order and compare numbers to at least $\mathbf{1 0 0 0 0} \mathbf{0 0 0}$ and determine the value of each digit - Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places - Round any whole number to a required degree of accuracy

ADDITION		
Year One	Year Two	Year Three
- Know how to combine 2 sets of objects together by counting them - Know part-part-whole and use this when talking about 'number sentences' (first, next, then) - Use part-part-whole to solve empty box questions eg. 8+5= - Know number bonds to 10 including 0 - Use number tracks to support counting and addition Be able to explain and apply	- Know number bonds to 20 - Apply to addition calculations $\begin{aligned} & 16+4= \\ & 37+3= \end{aligned}$ - Move from number tracks to number lines - Add a single and a 2-digit number $\begin{aligned} & 6+23= \\ & 23+6= \end{aligned}$ - Add two 2-digit numbers $21+14=$ Then... $\begin{aligned} & 62+31=93 \\ & 60+30= 90 \\ & 2+1=3 \\ & 90+3=93 \end{aligned}$ - Add multiples of ten to each other and to two-digit numbers: $\begin{aligned} & 40+50= \\ & 54+20= \end{aligned}$ - Be able to explain and apply	- Know number bonds to 100 , including ones $34+66=100$ - Add multiples of ten to reach hundreds and to cross the hundreds boundary $\begin{aligned} & 150+50=200 \\ & 137+90=227 \end{aligned}$ - Mentally be able to find the difference between the following: $\begin{aligned} & \text { HTU - U } \\ & \text { HTU - T } \\ & \text { HTU - H } \end{aligned}$ - Use informal written method using partitioning: - Add three digit numbers - Be able to explain and apply

ADDITION

Year Four
- Adapt informal written method from Year

- Start with TU + TU then HTU + HTU

$$
\begin{aligned}
& 60+5 \\
& \underline{10+8} \\
& \underline{70+13}=83
\end{aligned}
$$

- Use expanded layout to solve money and measures problems
- Be able to explain and apply
- Extend informal written methods to column addition of two integers up to $\mathbf{1 0 , 0 0 0}$
- Use with decimal money, length, weight, capacity
- Continue to stress mental and informal strategies of appropriate numbers
- Introduce by the end of the year, formal column methods of addition, including bridging the columns by carrying a value forward:

5346
$+1578$
$\frac{6924}{11}$

- Be able to explain and apply

Year Six

- Extend use of column addition to decimals and different contexts such as money, length, weight, capacity
- Be able to explain and apply

SUBTRACTION		
Year Four	Year Five	Year Six
- Mentally be able to find the difference between the following: ThHTU-U ThHTU-T ThHTU-H - Extend informal written method using counting on - focus on increasing efficiency and problems involving money, measures and time - Be able to explain and apply	- Mentally be able to find the difference between the following: ${ }^{10}$ Th Th H T U - U ${ }^{10}$ Th Th HTU-T ${ }^{10}$ Th Th HTU-H - Consolidate informal written method using counting on - focus on increasing efficiency and problems involving whole numbers, decimals, money, measures and time eg. - By the end of the year, column subtraction with exchange across tens/units columns eg. $\begin{array}{rlll} H & T & U \\ 9 & 7 & 1 \\ 9 & 8 & 2 \\ -4 & 5 & 7 \\ \hline 5 & 2 & 5 \end{array}$ - Be able to explain and apply	- Columnar subtraction with exchange across all columns using numbers to 10000000 - Columnar subtraction with exchange across all columns including decimals - Be able to explain and apply

DIVISION		
Year One	Year Two	Year Three
- Using grouping (of concrete apparatus and/or jottings) to solve question such as: I have 8 wheels, how many bikes can I make? Give everyone 2 sweets Make groups of 3 for PE Halving small even numbers - Be able to explain and apply	- Grouping equally into $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s $15 \div 3=$ - Put quantities into groups Stress that can be organised in any order Put 15 into groups of 3: $\begin{array}{lrrr} \times \times \times & \times & 3 & \\ \times \times \times & 6 & \\ \times \times \times & 9 & \text { Link to array } \\ \times \times \times & 12 & \\ \times \times \times & 15 & \end{array}$ - Halving as inverse as doubling - Be able to explain and apply	- Grouping equally into $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 8 \mathrm{~s}$ and 10s - Informal written method using equal groups on a numberline: Put 24 into groups of 6 - Introduce remainders Put 27 into groups of 6 - Focus on grouping rather than sharing - Halving even numbers as inverse of doubling - Division as the inverse of multiplication - Be able to explain and apply

DIVISION

Year Four
- Grouping equally into $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$,
$5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$ and 10 s
- Division facts for multiplication tables up to
12×12

- Read questions as:
'Put 136 into groups of 6'
- Extend informal written method as Yr 3 increase efficiency by using multiples of 10 as first jump
- TU $\div U / H T U \div U$
$136 \div 6=22 r 4$

- Be able to explain and apply
- Extend informal written method as Yr 4 increase efficiency by using multiples of 10 and 100
- Read questions as:
'Put 740 into groups of 6.'
- TU $\div U / H T U \div U / T h H T U \div U$

- Use whole numbers and decimals
- Introduce compact short division

$$
239 \div 8=
$$

$$
8 \stackrel{29 \mathrm{r7}}{23^{379}}
$$

- Be able to explain and apply

Year Six

- Continue to use number line and compact short division methods as in Yr 5
- HTU $\div T U /$ ThHTU $\div T U$
- Introduce long division
$432 \div 15=$

$$
15
$$

- Use whole numbers and decimals, including interpreting remainders as decimals or fractions
- Be able to explain and apply

MULTIPLICATION		
Year One	Year Two	Year Three
- Count, use concrete apparatus, use jottings or unitise to solve questions such as: How many wheels on 3 bikes? Can you make a tower three times higher that this one? - Count in 10s to 100 - Count in 2s to 20 - Double numbers to $\mathbf{5}$, then 10 - Use coins to count in $\mathbf{2 s}$, 5 s and $\mathbf{1 0 s}$ - Be able to explain and apply	- Count on in steps of 2, 3, 5 and 10 - Quick recall of multiplication facts for $2 x, 5 x$ and 10x tables and use this to work out division questions How many groups of 2 in 20? - Use a numbertrack, numberline or hundred square as support - Repeated addition $5+5+5+5=20$ - Make arrays to show multiplication as equal groups - Use x and $=$ - Doubling to 10 and beyond - Be able to explain and apply	- Count on in steps of 50 and 100 - Quick recall of multiplication facts for $2 x, 3 x$ $4 x, 5 x, 6 x, 8 x$ and $10 x$ tables - Single digit x1, x10, x100 - Doubling all numbers to 20 - Related facts eg. $7 \times 5=5 \times 7$ - Division facts $\begin{aligned} & 7 \times 5=35 \\ & 5 \times 7=35 \\ & 35 \div 7=5 \\ & 35 \div 5=7 \end{aligned}$ - Use grid method TU x U$14 \times 8=112$$X$ 10 4 8 80 32 $80+32=112$ - Be able to explain and apply

MULTIPLICATION		
Year Four	Year Five	Year Six
- Quick recall of multiplication facts up to 12×12 - Continue to use grid method as numbers become more complex - HTU x U / ThHTU $400+100+60+28=588$ or $560+28=588$ - Be able to explain and apply	- Use of grid method for all long multiplication questions - HTU x TU - ThHTU x TU - 2dp x U eg. as in money $\begin{aligned} & £ 21+£ 5=£ 26 \\ & 60 p+42 p=£ 1.02 \\ & £ 26+£ 1.02=£ 27.02 \end{aligned}$ - If decimals are not in context of money, multiply as whole numbers and use approximation to establish place value in answer: $5.07 \mathrm{~m} \times 8$ calculate as $507 \times 8=4056$ - Be able to explain and apply	- Children continue to use the grid method as PREFERRED WRITTEN METHOD FOR MULTIPLICATION - Introduce short compact multiplication 625×6 $\begin{array}{r} 625 \\ \times \quad 6 \\ \hline \frac{3750}{13} \end{array}$ - Introduce long multiplication ONLY AT TEACHER DISCRETION FOR INDIVIDUAL CHILDREN $\begin{array}{r} 234 \\ \times \quad 24 \\ \hline 936 \\ +4680 \\ \hline 5616 \end{array}$ - Be able to explain and apply

					FRACTIONS	
Year Four					Year Five	Year Six
- Count up and down in $1 / 10$ s and $1 / 100$ s - Divide quantities into ten/a hundred equal parts - Use a bar model to find fractions of a set of objects/quantity $1 / 5 \text { of } 10=2$					- Compare and order fractions with the same denominator - Recognise and use mixed numbers and improper fractions and convert them to use $2 / 5+4 / 5=6 / 5=11 / 5$ - Add/subtract fractions with the same	- Rounding to 3 decimal places - Comparing and ordering numbers to three decimal places - Compare and order fractions with same and mixed denominator - Add/subtract fractions with different
10						them the same, using the concept of
2	2	2	2	2	- Multiply fractions and mixed numbers by a	equivalent fractions
**	**	**	**	**	whole number	
$\begin{aligned} & 4 / 10 \text { of } 10=4 \\ & 2 / 5 \text { of } 10=4 \end{aligned}$						- $1 / 4 \times 1 / 2=1 / 8$ - Divide fractions by whole numbers - $1 / 3 \div 2=1 / 6$
10						
111	$1{ }^{1} 1$	1	$1{ }^{1} 1$	$1{ }^{1} 1$		
2	2	2	2	2		
**	**	**	**	**		
- Add/subtract fractions with the same denominator						

